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Abstract—n this paper, we describe Wwaover command

generation can be automated to increase robustness and

help relieve some of the burden dbuman operators. We

describe the issues inherent in the operations planning for a

distributed set of rovers, and vadhey can be addressed
using a centralized framework this a generalization of

Force multiplication Multiple rovers can colléanore
data than a single rover can. Designing a single rover
to withstand harsh environments for dpiperiods of
time has proven difficult and costly. Several rovers can
cover a larger area in a shorter time, with designated
points of interest allocated over the team of rovers. We

single rover paradigm. Finally, we describe a prototype
system for automaticallgenerating low-level commands to e
achieve high-level goals for a set of rav@mulated on a
terrain of geological interest.

call thesecooperativetasks.

Simultaneous presenc®ultiple rovers can perform
tasks that are impossible for a single rovafe all
thesecoordinatedtasks. Certain types of instruments,
such as interferometers, require simultaneous presence

TABLE OF CONTENTS at differert locations. Rovers landed at different
locations can cover areas with impassable boundaries.
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may have higher acceptable risk levels, allowing one
rover, for example, a venture farther despite the
possibility of not returning.

CONCLUSIONS

1. INTRODUCTION

Landmark events have recgnthken place in the areas of . .

spme eploration aml panetay rovers. The Mars In all cases, the rovers can behave in a cooperative or even
Pathfinder and Sojourner missions were major successéfordinated fashion, acceptin goals for the team,

not only demonstrating the feasibifitof sending rovers to performing group tasks and sharing acquired information.
other planets, but displaying the significance of such .

missions to the scientifiommunity. Upcoming missions " our approach, we use Avrtificial Intelligence (Al)
are currenyf being planned to sendhuic vehicles to Mars  Planning and scheduling techniques to automatically
(Mars01, Mars03, Mars05) as well as the outer planets arfifnerate appropriate low-level rover command sequences to
their moons. In order to increase science return and enaffl§nieve science goals. These planning techniques have been
advanced concepts, wemissions are ben proposed to integrated with a science analysis tool, and a_multl-rover
employ larger sets ofabdic workers. Whetheit is an ~and terrain simulator. We focus on a geological survey
unmanned spacecraft with remote rovers, or a mix ofcenario that involves cooperative science tasks.

humans andabdic assistants, #n @mmand and control _. _ _ . . :
task for these machines willebomplex. While manual First, the science analy_5|s tool using a clusterlng_a_lgonthm
request and sequence generation was possible fgenerates a set of high-level goals for examining and

Sojourner, ne missions will need to automate much of this@nalyzing  terrain ~ objects. Then, the goals are
précess. communicated to the automated schedulermFtte goals

and initial rover state information, the automated scheduler
Mission designers would need to determine the optim enerates a sequence of low-level commands that satisfies
number of rovers for a given mission. However, sendini e goals while obeying each of the rovers’ resource

multiple rovers has taleas three advantages: force onstraints and flight rules. While the goals do imdlicate
multiplication, ~simultaneous presence  and systerHVhiCh rover should be used for that request, the scheduler

redundancy automaticaly assigns rovers to tasks in a fashion that best
' serves tb entire set of requests. After generating the



commands and simulating their execution, the roveaddressed in future work.

telemety set (i.e., gathered data) is sent back to the science

analyzer. Using this me data, a ne set of goals is 2. MULTIPLE COOPERATINGROVERS

generated thais estimated to provide the most useful

information for classifying the observed objects. ThisWith al the success of recent space missions, we still have

process is repeate untii the science goals are all relatively little knowledge of our solar system. In addition,

accomplished or the rovers are no longer operational. the quest for cheaper missions nmlgace information
gathering an even mer dallengirg problem. One

As the focus of this paper, we describe a centralizedpproach to this probie is to deplg mary smaller probes

approach to automateplanning. Tte ceatral planner can instead 6 fewer, moe mmplicated spacecraft. While one

be run on the ground, on an orbiter, on a lander, or on onveell-equipped spacecraft can do a detailed analysis of one

of the rovers (see Figure 1). The relevant sub-plans (i.e., —

command sequences) are transmitted to each rover for

execution. The intelligent capabilities (including automated

planning), however, could be distributed across the agents.

Other approaches to multi-agent planning have various

degrees of distribution [1,2,12,13,16,17].

To produce the rover command sequences, we use thgi"
ASPEN  (Automated Scheduling and Planning &
Environment) system. ASPEN uses an 'iterative repair”
algorithm, which classifies conflicts and attacks them each
individually. Conflicts occur when a plan constraint has
been violated; this constraint could be temporal or involve a
resource, state or actiyiparameter. Conflicts are resolved —
by performing one or more schedule modificaiazich as  — I — |
moving, adding, or deleting activities. A goal with an
unassigned rover is one type of conflict. Other conflicts —
may include a science request for examining a target I —
location that does not have a planned visit. Resolving this _‘_ """ T
conflict involves adding a traversommand to send one of
the rovers to the designated site. The iterative repair
algorithm continues until no conflicts remain in the
schedule, or a timeout has expired. In order to enhance the

quality of produced schedules, we have implemented ¢
heuristics for assigning rovers to goals and for deciding op
the order in whichd visit each of the specified locations. | 9ot 274.141 581.147 20 v
The heuristics borme from algorithms for finding solutions | ok | goto 7.40242 -0.778314 4.79082
to the Multiple Traveling Salesmen Problem (MTSP). With| goto | turn 0.096491 -0.323348 0.526865
multiple rovers covering the same area, wetwarchoose | tm | PEFOAEERCEIR, o o 1 oera
paths tha minimize the toth traversing time of i the PaNO | furn -0.136492 -0.309461 0.308704

] - . goto ;
rovers. Both algorithms and heuristics are generic, and ¢g tyn | Panoramic_spectra

Command

icationami i k | goto-492.54-150.225 18.1138
be used for other applicatisnsmilar to the multi-rover gczﬁo QI -0.746433 -0.563260 0.15726
problem. turn | rockgroup _spectra 14.033

rock | goto-559.596 232.463 12.8491

turn -0.658439 -0.423046 0.357494

This rest of this paper is organized in the following rockgroup  specira 8.32005

manner. We begin yb characterizing the multiple
cooperating rovers application domaindadescribe some
of the interesting challenges. Next, we introduce the
ASPEN planning and scheduling system and erplaw
automatd planning and scheduling techniques can be
applied to this problem. We disss veral heuristics for
solving the MTSP problem dnpresent some results on = ===
how they improve both system and final plan efficiency. . = =
We then discuss the overall framework ttha used to )
achieve a set of geolpgelated science goals. Next, we i
discuss bdt how to extend tts g/stem to provide the long- Figure 1 Rover command sequences generate
term goal of rover and spacecraft autogoamd hev this by a centralized planner.

extension compares with related efforts. Finally, we presenfite several small spacecraft can gather information over a

TOCKgroup _3jpecta 9.72123




missiors such as the atmospheric probe on Galileo and th
Sojourne rover on Pathfinder. In each case, separating
small peceof the spacecraft allowed science instruments tq
reach otito nev ground. Recent advances iobdics are

enabling more flexible and mobile systems, while retaining
robustness. Future missionsillwli kely have multiple

components, all of whit need b be ®ordinated to serve }
the mission goals.

Activity image {

int X, y, z; // location of image

Decompositions =
roverl_image (X, y, z) or
rover2_image (X, vy, z) or
rover3_image (X, v, 2);

Activity roverl_image {
int X, y, z; // location of image
Reservations =
roverl battery use 10,
roverl_memory use 1000,

Whether thg are spacecraft, probes mvers, coordinating
multiple distributed agents introduces some interesting ne
challenges for automateplanning and other supporting
technolog [1,2]. Issues arise concerning:

roverl location must_be <x,y,z>;

« Interfaces between agents } -

e« Communication bandwidth

*  Group command and control Activity roverl_traverse {

* Onboard capabilities int x, y, z; // location to go to

Reservations =

For example, mission designers will need to decide ol roverl_battery use 100,
interfaces for each of the rovers. This includes not only roverl_location change_to< Xx,y,z>:
interfaces to the ground operations team, but asahter }

rovers and the lander and/or orbiter. A certain level o
communication capabilities will need the assigned to
each, limiting the amount of information that can be sharec
between the rovers (dnground). The mission design will centralized, master planner (which can be on the lander or
need to include a “chain of command” for the team ofon one of the rovers) generates and transmits commands to
spacecraft/rovers, indicating which roverse aontrolled the simulated rovers for execution. The rovers have
directly from the ground, and which@ntrolled ly other  identicd interfaces for traversing, communicating and
rovers or orbiting/landed spacecraft. Finally, the onboargerforming sciece eperiments. Issues with faults,
capabilities will need a¢ be nsidered, including monitoring and replanning are being addressed in future
computirg power and onboakr data storag @pacity. This  work.

will limit t he level of autonogeach of the rovers nahave.

Figure 2 Rover Activily Definitions

. . 3. AUTOMATED SCHEDULING AND PLANNING
Many of these design issues are related, and all of them

have an impact on automdtglanning and scheduling Artificial Intelligence (Al) planning and scheduling
technologies used for the mission. The interfaces determirtechnologies can be used to automatjcafienerate
what activities can be planned for each rover. The amoubmmand sequences for spacecraft and rovers. Given a set
of communication available will determinevaonuch each of high-level science goals, the planner/scheduler
rover can share its plan. In additiongetixecution of a automaticaly generates low-level command sequences that
rover mg need o be monitored for replanngpuposes. If  accomplish the goals and that pffieght rules and resource
bandwidth is lav and reaction time is critical, a rover may constraints. To provide this technologye wetend the
need to monitor and replan its own activities in response tASPEN application framework.
unexpected or fortuitous events. €llontrol scheme will
also determine which rovers execute activities in the plan®\SPEN [3] is a reusable application framework that can be
If one rover controls another,dimaster” rover will send adapted for man planning and scheduling applications.
activities fran its plan to tle “slave” rover for execution. First, models of the spacecraft and rovers are defined in the
Decisions on the onboard capabilities of each roverASPEN modeling language. This language allows the user
however, \ill limit t he independence of each rover. Withto define the set of activities, resources, and state variables
littte @mputig power, one rover maonly be able to as well as the interactions and constraints between them.
execue mmmands. More power rgallow it to plan and  An activity has a stdrtime and an end timet may also
execute. 8l more power mug allow it to plan, execute, have a set of temporal constraindsather activities. Each
monitor and replan activities. The planning, execution andonstrair indicates a required order of execution for a pair
monitoring functions can be for the rover itself, as a servicef activities. An activiy may also have a set of reservations.
to athe rovers or in cooperation with otheovers. A reservation is a scheddleusage o requirement on a
system resource or state variable. An agtivin also
In recent work aithe Jet Propulsion Laborajo(JPL), we decompose into a set of activities with temporal constraints
have demonstrated a prototype of automhgdanning and  between them. Finally, an actiyitan have aly number of
command sequence generation for mutigboperating parameters with arbitrgfunctions to compute their values.
rovers. For the initial work, we hauhosen a configuration
with one “master” planner with several “slave” rovers. The
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Figure 3 A Plan/Schedule for Multiple Rovers Viewed with the ASPEN GUI

The application model essentialdefines the types of the star time. In addition, goals will usugll have
activities and resources that can occur in a given schedulensatisfied requirements that can yorle resolved with
Figure 2 show me eamples of activig types for the other activities. Fnm this, the planner/scheduler must
multiple rover domain. A plan/schedule is a particulargenerate a plan that has all of these problems resolved.
configuration of instances of the activéind resource types.

An example plan/schedule for the multi-rover application idn ASPEN, unexpanded activities, unspedfiparameter
shown in Figure 3, with activities represented as horizontalalues, unsatisfied requirements and violated constraints
bars in the top section, and resource profiles in the bottorwre all considered conflicts in the schedule. Therefore, the
section. Some activities are uncontrollable may have problem becomes ond &inding a conflict-free schedule.
effects that are requiredy lother activities. For example, ASPEN has a librgrof algorithms designed to search for a
sunrise and sunset determine when solar panels acenflict-free schedule. One of the more widelised
operational. These activities are simpbaded &the start algorithms is based on a techrégalled “iterative repair”

of planning. Next, the high-level science goals can b4]. In this algorithm, conflicts & dassified and addressed
inserted into the schedule. Typically, these are unexpandéd a local, iterative fashion. First, a conflict finathe set of
activities that have unspecifigarameter values, including conflicts is chosen forepair. Then, a repair method is



chosen as an operationr feesolving tle onflict. Repair
methods include moving activities, addingwnactivities,
deleting activities, setton parameter values, and
decomposing activities into subactivities. For each method,
other decisions nya be required. For example, when
moving, an activig and location must be selected. When Y
setting a parameter, a wievalue must b dosen. After

making the appropriate decisions, the scheduling operation : \ Rover2
is performedn hopes of resolving # @nflict. Finally, the
new set of conflicts is collected, and the algorithm repeats
until no conflicts are found, or a user-defined time limit has
been exceeded.

Roverl

Rover3 \

In the multi-rover application, activities and resources are X )
modeled for the lander and each of the rovers. The lander Figure 4 Traveling Rovers

provides tle ommunication link as well as tempoyatata  gptimal schedules. In other words, when several options are
storage. Each rover has actidtiesich as ftraversing, ayailable fo repairing a conflict, these options are ordered
turning, taking images, taking spectrometeadings, and pased on predictions of Wo favorable the resulting
digging. Each rover has its own resowraech as battery gchedule will be.

power, solar arna power, and science instruments, and
state variables representing location and orientation. The heuristics we have implemented are based on

. . L techniques frm the Multi-Traveling Salesmen Problem
SC|er_lce g_oals are defined as abstra_ct activities that do ”G\?ITSP). The Traveling Salesman Problem (TSP) [5] is one
speciy which rover to cay out the science. Gne&ample i finding a minimatour for a salesman that needsisit
is the “‘image” activiy in Figure 2. These types of activities 5 humber of cities (and typicgltetum home). For MTSP,
can be decomposed into a science agtioit one of the 4 |east one member of a salesnteanust visit each city

rovers. For example, ¢h ‘image activity can be guch thatotd traveling time is minimized. Salesmen are
decomposed iot cne of severiamore specialized image gjjowed to travel in parallel with each other.

activities involving one of the possible rovers. When a

science gdai's first createdit is typicaly not decomposed, \jany algorithms exist for solving both TSP and MTSP
and therefee onsidered a conflict. Resolving this conflict ,qplems. For a small number of locations (N<10) optimal
involves glecting a decomposition (i.e., one of the specificsg|ytions can be found in a reasonable amount of time.
rover activities) and creating thewesubactivity. In this _However, for larger sets of locations, finding optimal
way, work can be delegated to each of the rovers whilgy|tions is 0o expensive (NP-hard) and approximate
considering the t_otal available resources. For exam_ple, “‘ﬁgorithms can be used [14]. Grgadchniques can be used
currert traverse times canebonsidered when selecting a 5 find near optimal solutions in polynorhigme (O(N),
rover to achieve a science goal at amecation. A sCience \yhere the resulting tour lengths have been prowete tat
goal, such as taking a spectrometading, simplrequires 66t gN3F-1 times the optimdength. Two possible types

a rover o be at a particular Iocatlon._ Metraverse and turn greey TSP algorithms are insertion and appension
activities (e.g., “roverl_traverse” in Figure 2) must beyigorithms. In an appension algorithm, unvisited locations
added to move the selected rover to the desired location aQgs selected and appended t@ tind of the eisting
orientation. The planner/scheduler must also select Spec'flﬂanned tour. The nétocation to append musehhosen
start times for each of the activitiesb{iously, the order of = carefyly in order to minimize the fifatour. The greedy
the traverses will matter). Some activitiesyneaen need 1o giratey would simpy choose the unvisited location that,
be deleted. For example, if all activities do niotih the  \yhen ‘appended, results in the shortest intermediate tour.

available time, some low-prioyigoals mg be rejected. For insertion algorithms, the order in which unvisited
locations ae diosen is less critical, because subsequent
4. TRAVELING SALESMEN HEURISTICS locations can be inserted betweery &mo locations in the

N - . currert tour. In this case, the greedtratey chooses the
One of the dominating characteristics of the multi-rover, gree g

T - ~linsertion point that results in the shortest intermediate tour.
application is the rover traversals to designated waypoint

. ) Both algorithms can & asily extended to multiple
Decisions must be made not prtb satisy the requested yayelers. Unvisited locations er éther appended or
goals, but also to provide more optimal (i.e., efficient)

- - .~ "Jinserted intaany of the tours when looking for the shortest
schedules. Whe not considering efficiency, one possible tour y g

schedule that achieves all science goals is to send one rover
to evey target |ocation. However, usuplhis would not be 1y mitirover scenario fits naturgiinto the MTSP class

the desired behavior, and therefore some SCE.edutﬁ problems, with oryl a few differences. First, the rovers
optimization must be done. We fehosen to do this 5.0 yynicaly not required to return to their original

optimization during the repair process. As certain types Qhcations (however, for sample return missions, this would
conflicts are resolved, heuristics are used to guide thg, necessary). This is a minor differencel aibes not
search into makip decisions that will produce more '



change the general problénfrigure 4 shows three possible
insertions (one from each path) for asiecation. Second,
while planning activities for multiple rovers, one iscal®
concerned with ta arliest finish time (i.e., makespan) of
the schedule. The schedule with the mimmtotal path
length (sum of rover path lengths) ynaot necessasl be
the schedule where all activities finish etharliest. Goal
Reducing the totatraverse time will reduce wear on the

rovers, while reducing the makesparill wncrease the

available science time. Finally, generating command

Scientis

Goals

Planner/

Schedule Status

State

ommandaas

Execute/

sequences requires reasoning about more than just the pat Results el
of the rovers. Each rover has a sétflght rules and a . .
limited amount of resources. All commands, including Figure 5 Autonony Architecture

traverses, must be scheduled in & Weat does not violate
any of the flight rules oresouce @nstraints. Some of these
constraints myainherenty require sub-optimal travel paths.

planner was integrated with a science simulator and a
science analysis module. Together,ythmplemented an
analyze-plan-execat g/cle shown in Figure 5. In each
cycle, ASPEN receives a set of goalsnirdhe science
Snalyzer and initial rover positions fothe simulator.
Both are represented as actniiistances in the planner. A
essagesi ®nt to ASPEN instructingt to begin receiving
i L . the activiy instances, followedyba text representation of
science activit for one of the rovers. The other is used t0y,¢ 5ctivities. Next, a message is sent to ASPEN telling it to
select a tempofdocation for the science activities vyhen start planning with te arrent set of activities. Finally,
they are moved. Both use the samvaluation criteria: @SPEN is instructed to send the resultihng command

make the selection that results in the shortest path. For t 8quence to the simulator when planning is complete and
decompositia heuristic, this means choosing the rover that,

has the shortest path after including aitvis the new

location. For the move heuristic, themscience activitis g geience simulator generates the rover environment as
moved to a time between two existing science activitie§el a5 smulating execution results. yB changing
which creates a mepath shorter than grother possible  orameters in the simulator, various rock fields can be

When generating command sequences for multiple rover
ASPEN uses two heuristics thamplement a greedy
insertion MTSP algorithm. One is used to select
decomposition of a generic science Igoato a specific

o conflicts remain in the schedule.

new path. generated consisting of several different types of rocks. The
. simulator also represents the location and orientation of
Table 1 MTSP vs. Random Heuristics each rover. From this, the field of wieof each rover can be
Avg Time For | MSTP Random estimated. The simulator accepts commands for simulating
Traverse 2 hrs 21 min 3 hrs 4 min scierce experiments as well as moving and turning the
Makespan 4 hrs 1 min 8 hrs 24 min rovers. Given a command for a saerexperiment, such as
Planning 60 sec 68 sec a spectrometeread of a rock, the simulator woubenerate

results based on the instrument type and rover location.
Using the ne heuristics had a significanmpact on the
generated command sequences. The results of using thd3ee science analysis modulonsists of a clustering
heuristics wee ompared with results from using random algorithm [15] that automaticgll generates goals for
heuristics (i.e., heuristics thanake selections randomly) science instruments based on results of previous
and are shown in Table 1. Twerttials were run on the experiments. Té dustering algorithm attempts to classify
same set of goals but with different random seeds. Thebserved rocks. The werequested observations are those
MSTP heuristics reduced both makespan and taiserse selected ¥ the algoritim that are predicted to provide the
time of the final sequences. Traverse time was decreased fpst usefl information fo refining the dassification.
24% and makespany52%, approximatgl doubling the  Goals are also prioritized and those with priorities Wwedo
available time fo rover activities. In addition, the time user-specified threshold eronsidered optional. If the
required to generate the sequences was reducegslanner is havig dfficulty finding a solution, optional
Approximatey 13% less time was needed to repair all ofgoals can be rejected to free up time for higher priority
the conflicts createdytthe same set of science goals. goals.

5. ANALYZE-PLAN-EXECUTE 6. TOWARDSAUTONOMY

ASPEN was demonstrated on a science scenario involvinQne of the goals of automat@anning and scheduling is

three planetar rovers on a simulated rock field. The to provide important capabilities for autonorsogstems.

An autonomos gstem must be able to achieve objectives

) in the face of uncertainties with little outside guidance. An
We use the term “path” as opposed to “towr'dstinguish from traversals onboad pianning system, together with systems for

that return to the original location. Here, a path is a traversal between scienggecution, monitoring, and science analysis, can provide

wayzoints. Wedo nd addres pah danning for the purpose of obstacle the capabilities for an autonomous space vehicle [11]_
avoidance.




_ _ 7. RELATED WORK
With these systems onboard, a rover can operate unaided

for long periods of time given ogl a set of high-level While we are unaware of grother papers on multiple
objectives. The science analysis wbuke the objectives, cooperating rovers for exploring an extraterrektearain,
and the data collected so far, to generave sets of science the multi-agent communit has developg prototype
goals for the rover. These goals are then sent to the planrsystems for a similar probteinvolving servicing multiple
for expansion and sequencing. Once the valid commanilansportation requests with a population of agents. These
sequence is generated, commands woeldxiecuted and agents can be trucks for a shipping conyd], forklifts
monitored l the orresponding onboard systems. Ason an automated loading dock [17],robds servicing a set
information is acquired regarding command status andf office cubicles [18]. Like other multi-agent systems, the
actual resource utilization, the planner can update futureain objective motivating thes examples is to study
projections. Frm these updates, we conflicts and various mechanisms for high-léwask allocation and low-
opportunities my arise, requiring the planner to replan in level activity coordination. All of thes examples give their
order to accommodate the unexpected events. In additioagents the autongnto plan their activities while using the
new goals ma be presented to the rover from the ground ormechanisms to manage interactions.
from the onboard science analysis. Finally, the data
resulting from execution can then be fed back to the scient&hile othes gart from a multi-agent paradigm, this work
analyss g/stam to use in generating mescience goals. All  starts with that of a single agent, and its approach to
of this can happen onboard the rover with little or no planning and execution is wesimilar to that of the DS1
human interaction. spacecraft's remote agent experiment [6,7lnstead of
treating the rovers as distinct agents, we tttb@m as
Although this ma seen like a vey optimistic goal, steps connected appendages of the lander. Giventkiealander
are being made in this direction. ThevN#lillennium  plans and schedules all rovers from glolsdormation, it
Deep Space One (DS1) spacecraft will demonstrate thean generate more optimal plans than the multi-agent
onboard Remote Agent experiment [6,7,11] that has all butpproach’s rover badeganners — which ol plan from
a science analysis module. Prototype demonstrations hal@al information on each rover.
shown the ASPEN planning system successiaflegrated
with an execution architecture for prelimigamodels of Although optimaliy does not sufficienyl motivate using a
the Deep Space Four (DS4) comet lander mission. In thismulti-agent approach, scalabjliand robustness will. The
case, the Continuous Plannet (&n extension of ASPEN) rovers-as-appendages approach uses an assumptighetha
constanyy monitors the simulated execution of thelander can appropriatemonitor all rovers and respond to
spacecraft and replans when conflicts are detected or newmexpected events This requires a highl reliable
goals inserted. Finally, ASPEN has been integrated witdommunications channel with enough bandwidth to
two science tools. The first automatigajlenerate sience  overcome the unexpected event frequendyhis implies
goals, which was described in the pregiogction. The that all rovers are in constant radio contact and the system
second, called WITS (Web Interface for TeleScig¢ri@kis  has either a vgrhigh-bandwidth communications channel
used for manual selection of science goals on hth@ges or a moderate number of rosegparsey distributed over a
of the rover surroundings. static landscape. Upon dropping the assumption, the rovers
will have to localy manage uncertainties, and this will
Rather than full committing to an autonomous rover, motivate using a multi-agent approach in the future. Given
autonony can be inserted incrementally. At first, manualthe arrert mission scenario, a single agent approach is
science tools, such as WITS, can be used to generate goalfficient, and the incremental commitneio autonomy
for a planne running on the ground. With crude models, requirement makes it preferable.
the results of the planner can simpk used for analyzing
the feasibiliy of the science requests. It canoale used to 8. CONCLUSIONS
allow the scientists to provide rover engineers with a more
complete sequence rather than just a set of requests. Thising multiple rovers can significagtl increase the
sequence will have a better chance of being accegtdteb capabilities and science return of a mission. Rovers can
engineers, and fewer negotiations will be required. Alsowork in parallel, cooperating to achieve a set of global
engineers will be required to do less work in order toobjectives. Such multi-agent systems, however, introduce
complete and validate the sequence. As the planner modélév challenges to control and autonomy. Issues of
become more accurate, the resulting sequences will requitigterfaces, ~ communication,  control and  resource
fewer modifications. With a refined model, sequences wildistribution will need ¢ be addressed. An automated
require no further validation, and the planner can be move@glanner must & onsidered when makin decisions on
onboard the rover. With the planner onboard, the scienddese issues. The use of an autoshaganner can
analysis mod@ @n be inserted to generatewlgriority  significanty reduce the required rover operations time.
goals in addition to those givery human scientists. This Ultimately, the planner can be moved onlbaroviding a
would keep the rovers busy, even when ground coritac key component in making the rovers more autonomous.

lost or whe high priority goals cannot be achieved.
In our work, we have demonstrated the ASPEN planner
generating command sequences for a team of rovers. As
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first step towards an architecture for autonomous rovers. lappreciated.
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